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ABSTRACT 
As the world transitions towards sustainable transportation, Electric Vehicles (EVs) have emerged as a promising solution. 

The heart of any EV is its battery pack, and ensuring the efficient operation and longevity of this critical component is 

paramount. This research explores the integration of a health check status within Battery Management Systems (BMS) for 

EVs, with the aim of significantly improving battery efficiency and overall vehicle performance. The Battery Management 

System plays a pivotal role in monitoring, controlling, and optimizing battery performance. By incorporating a health check 

status, early fault detection becomes possible, allowing the system to identify issues such as cell degradation, capacity loss, 

and thermal problems at an incipient stage. This early detection enables proactive measures to prevent unexpected failures, 

reducing repair costs and enhancing user satisfaction. Additionally, the BMS adapts its strategies based on real-time State of 

Charge (SOC) and State of Health (SOH) information, optimizing charging and discharging processes. By adjusting these 

parameters according to the battery's condition, the system extends the battery's life and provides more accurate range 

estimations to the driver. Moreover, the research emphasizes the importance of adaptive control for balancing the state of 

charge among individual cells, leading to improved energy utilization and battery longevity. Temperature management 

strategies can also be fine-tuned based on health status, ensuring the battery operates within its optimal temperature range. 

Furthermore, this study underscores the value of user feedback, predictive maintenance, and data analysis for continuous 

improvement. Informed drivers can contribute to better efficiency by making conscious decisions regarding their driving 

habits, charging frequency, and maintenance schedules. This research not only benefits individual EV owners but also 

advances the broader goals of reducing environmental impact and fostering the adoption of electric vehicles in the modern 

automotive landscape. 

Keywords: Battery Management System (BMS), Electric Vehicles (EVs), Battery Efficiency, Health Check Status, State of 
Health (SOH), Adaptive Control, Early Fault Detection, Sustainability in Transportation. 

 

I. INTRODUCTION  

In the rapidly evolving landscape of transportation, Electric Vehicles (EVs) have emerged 

as a pivotal solution to address the pressing challenges of environmental sustainability and 

energy efficiency. The core of any electric vehicle is its battery pack, a complex assembly 

of individual cells that store and deliver electrical energy. Maximizing the efficiency and 

longevity of these battery packs is paramount to ensuring the widespread adoption and 

success of EVs. This research embarks on a comprehensive exploration of how the 

integration of a health check status within Battery Management Systems (BMS) can 

revolutionize the performance of EV batteries [1].  

Battery Management Systems (BMS) serve as the guardian angels of EV batteries, 

orchestrating a symphony of functions that include monitoring, control, and optimization. 
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They regulate crucial aspects such as charging rates, discharging levels, cell balancing, and 

thermal management to ensure the battery operates safely and efficiently. However, 

batteries, like any other complex system, are susceptible to wear and tear, environmental 

factors, and operational stresses. To address these challenges, the concept of a health check 

status within the BMS has gained traction as a means of actively assessing and managing 

the condition of individual battery cells [2].  

The objective of this research is to delve into the multifaceted benefits of incorporating a 

health check status within the BMS of electric vehicles. By doing so, we aim to provide a 

holistic perspective on the advantages of this technology, both from a technical and 

practical standpoint [3].  

One of the fundamental aspects explored in this research is the early detection of faults and 

anomalies in battery cells. With a health check status in place, the BMS can identify issues 

such as cell degradation, capacity loss, or thermal problems at their inception. This early 

fault detection mechanism empowers the BMS to take proactive measures, thereby 

preventing catastrophic failures and reducing repair costs. Furthermore, this enhances the 

safety and reliability of EVs, instilling confidence in consumers [4]. The integration of a 

health check status also has profound implications for State of Charge (SOC) and State of 

Health (SOH) management. These two parameters are pivotal in determining the 

performance and range of an EV. By continuously monitoring the SOH, the BMS can 

dynamically adjust the SOC, effectively extending the battery's lifespan and providing 

more accurate range estimations to the driver. This adaptability represents a significant 

stride towards optimal energy utilization and user satisfaction. In recent years, 

advancements in autonomous electric vehicles (EVs) have been accompanied by 

innovations in sensor technologies. These sensors, including LiDAR and cameras, play a 

crucial role in enhancing the safety and functionality of EVs (Sniffer Faster R-CNN: A 

Joint Camera-LiDAR Object Detection Framework with Proposal Refinement) [5], [6].  

Moreover, the health check status enables the BMS to execute precise control over charging 

and discharging processes. It can tailor these operations based on the real-time condition 

of the battery, ensuring that high-stress charging or discharging is minimized during 

periods of degradation or low health. This adaptive control strategy plays a pivotal role in 

preserving the battery's integrity and, subsequently, its efficiency. Balancing the state of 

charge among individual cells is another critical facet of battery management [7]. The 

health check status allows the BMS to implement active cell balancing, wherein cells with 

lower capacity or health are managed differently, ensuring that all cells contribute evenly 

to the overall performance [8], [9]. This balancing mechanism, when fine-tuned based on 

health data, can enhance energy efficiency and prolong battery life [10]. 

Temperature management is another area where health status awareness proves invaluable. 

By continuously assessing the battery's health, the BMS can adjust thermal management 

strategies to maintain the battery within its optimal temperature range. This has a direct 

impact on efficiency and the overall longevity of the battery. Furthermore, this research 

highlights the importance of user feedback and education. Providing drivers with real-time 

information about their battery's health enables them to make informed decisions about 

their driving habits, charging frequency, and maintenance schedules. In this way, the health 
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check status promotes responsible usage, contributing to the efficient operation of the EV 

[11], [12]. 

Additionally, the concept of predictive maintenance is explored in this research. By 

continually assessing battery health, the BMS can predict when maintenance or 

replacement is needed. This proactive approach reduces downtime, lowers maintenance 

costs, and maximizes the efficiency of the vehicle. In conclusion, the incorporation of a 

health check status within the BMS of electric vehicles represents a crucial advancement 

in battery technology [13]. It not only benefits individual EV owners by enhancing battery 

efficiency and prolonging battery life but also contributes to the broader goals of reducing 

environmental impact and fostering the widespread adoption of electric vehicles. Through 

this comprehensive investigation, we aim to shed light on the transformative potential of 

this technology and its implications for the future of sustainable transportation [14], [15].  

The figure below presents series of Vehicle Charging to station topology diagram. 

 

Figure 1: Series of Vehicle Charging to station topology diagram. 

DEVELOPMENT OF A NOVEL REMOTE CALIBRATION TECHNIQUE FOR DC 

CHARGING STATIONS 

In our pursuit of achieving remote calibration, we introduce a novel approach for 

calibrating propagation-type charging stations. The overarching strategy is outlined as 

follows: 

Upon acquiring data from the charging process, we initiate calculations to determine the 

disparities between the current and voltage measurements of the electric vehicle's Battery 

Management System (BMS) and those of the charging station. These discrepancies are 

computed separately. By doing so, we can pinpoint the real-time errors in current and 

voltage measurements of the electric vehicle's BMS concerning the charging station. 

Subsequently, we construct a suitable mathematical model to characterize these errors in 

current and voltage [16]. Utilizing the error data in current and voltage measurements 

relative to the charging station, we proceed to estimate the parameters of this model. 

Consequently, we obtain estimated values for the current and voltage of the electric 
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vehicle's BMS concerning the charging station. After securing the current and voltage 

measurement errors of the charging station slated for validation, we apply the principles of 

electric energy measurement to estimate the error in electric energy measurement. This 

systematic process facilitates the calibration objective. 

ANALYZING ERRORS IN ELECTRIC ENERGY MEASUREMENT ESTIMATION 

The electric energy measurement function, as expressed in Formula (1), relates electric 

energy (E) to voltage (Uc), current (Ic), and charging time (t). 

E = Uc * Ic * t                                                                                                                                                   (1) 

Derived from Formula (1), the electric energy error (δE) is computed as a function of 

voltage measurement error (δUc), current measurement error (δIc), and time measurement 

error (δt). This calculation, as depicted in Formula (2), unfolds as follows: 

δE =  δUc ∗  ∫ (Ic ∗  dt)  +  δIc ∗  ∫ (Uc ∗  dt)  +  Uc ∗  Ic ∗  δt                                         (2) 

 

MODELING CURRENT MEASUREMENT ERRORS 

To ascertain an estimation of the measurement inaccuracies within the charging station, we 

embark on an exploration of the charging station's measurement process. Our journey 

commences with the establishment of a measurement error model for the charging station, 

accompanied by a thorough analysis of the origins of these measurement discrepancies. 

Within this intricate landscape, we encounter key components denoted as R1, R4, R2, and 

R3. R1 is the current sampling resistor, R4 represents line loss, while R2 and R3 serve as 

voltage-dividing resistors instrumental in voltage measurement. 

A comprehensive examination of the charging station's schematic diagram unveils a critical 

relationship: the current output measurement value (Ic) at the charging interface is 

equivalent to the charging current (I). I traverses the sampling resistor and becomes 

accessible through ADC sampling. Consequently, the current measurement value 

materializes via Formula (3) as follows: 

1 c x b I I R  + = ∫ (Uc ∗  dt)  +  Uc ∗  Ic ∗  δt                                                                (3) 

In Formula (3), 'α' signifies the gain error of the ADC, 'x' represents the quantization 

outcome of the ADC, and 'b' denotes the offset error of the ADC. Delving further into the 

intricacies, Formula (4) emerges as the embodiment of the error transfer process for current 

measurement error (Ic): 

  + + = δIc ∗  ∫ (Uc ∗  dt)  +  Uc ∗  Ic ∗  δt                                                                     (4) 

Given the approximate adherence of the quantization error of the ADC and the resistance 

value error of the resistor to a normal distribution, it follows that the measurement error 

(δIc) pertaining to the charging station's current conforms to a normal distribution as well, 

succinctly expressed as δIc ~ N(μi, σi^2). 

MODELING FAULTY SENSOR DATA ERROR 
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This research focuses on assessing the accuracy of sensor data for optimizing battery 

efficiency. It leverages the "Feature Selection Using Enhanced Marine Predators' 

Algorithm" as outlined in article [17]. 

The MPA algorithm introduced in this context involves the concept of predators and prey, 

which incrementally determine the accuracy of sensor faults to achieve the highest 

precision in data collection. This precision is achieved through the following formula: 

 prey 
𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { prey 
𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝐶𝐹[𝑋min
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑅⃗ ⊗ (𝐷max

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝐷min
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) ⊗ 𝐵⃗ ]𝑖𝑓𝑟

 ≤ 𝐹𝐴𝐷 sprey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + [𝐹𝐴𝐷𝑠(1 − 𝑟) + 𝑟]( prey 
rand 1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  −  prey 
rand 2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) ifr >  FADs 
     (5) 

[17] 

Where, CF represents a coefficient, X_min is the minimum data point, R is a vector, D_max 

and D_min denote the maximum and minimum data values, respectively, and B is another 

vector. FAD is a function that assesses the fault value of a specific prey, while FADs is a 

parameter related to fault sensitivity. The variable 'r' accounts for a weighting factor in the 

evaluation. 

Integrating the sensor measurements from the above equation (5) to assess the model's rigor 

in determining battery efficiency, we derive the state of health, which is elucidated in the 

subsequent equations: 

𝑃EVCS = 𝑃𝐵𝐸𝑆𝑆 − 𝑃𝐸𝑉                                                                                                         (6) 

where P_"EVCS" represents the power output injected into the Electric Power System 

(EPS) by the Electric Vehicle Charging Station (EVCS), P_BESS signifies the power 

output from the Battery Energy Storage System (BESS), and P_EV denotes the power 

injected into the Electric Vehicle (EV) at the EVCS. 

𝑃𝐵𝐸𝑆𝑆
min ≤ 𝑃BESS ≤ 𝑃𝐵𝐸𝑆𝑆

max                                                                                                       (7) 

where P_BESS^max and P_BESS^min represent the maximum and minimum allowable 

power levels for the BESS, respectively. Typically, P_BESS^min is equal to the negative 

value of P_BESS^max. 

It is important to note that the reference for P_EV is generated from the EVs at the onset 

of the charging service, with its allocation being determined by the Energy Management 

System (EMS) of the FEVCS: 

𝑃𝐸𝑉
𝑜 = 𝑃𝐵𝐸𝑆𝑆

𝑜 − 𝑃𝐸𝑉𝐶𝑆
𝑜                                                                                                           (8) 

where P_EV^o denotes the reference for P_EV, P_BESS^o and P_EVCS^o represent the 

portions of P_EV^o derived from the BESS and the grid, respectively. It is assumed that 

P_EV^o is greater than zero. 

Additionally, in conjunction with the FEVCS, a Frequency Regulation (FR) operation is 

designed to compensate for Δf, as expressed by: 

𝑃𝐹𝑅(𝑡) = 𝐾𝑃 ⋅ Δ𝑓(𝑡) + 𝐾𝐼 ⋅ ∫  
𝑡

0
Δ𝑓(𝜏)𝑑𝜏,                                                                               (9) 
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where K_P and K_I denote the proportional and integral gains of the FR controller, 

respectively. The variable Δf has a mean value of zero but exhibits components distributed 

around f_0 following a Gaussian distribution pattern. This FR operation is constrained as 

follows: 

|𝑃𝐹𝑅| < 𝛼 ⋅ 𝑃𝐵𝐸𝑆𝑆
max , (0 < 𝛼 < 1)                                                                                        (10) 

where α represents a coefficient determining the percentage of battery power allocated for 

the FR service. 

Taking into account the physical constraint outlined in equation (2), the references for 

P_BESS and P_EV are determined as follows: 

𝑃𝐵𝐸𝑆𝑆
∗ = {

𝑃𝐵𝐸𝑆𝑆
𝑜 + 𝑃𝐹𝑅(𝑡),  if |𝑃𝐵𝐸𝑆𝑆

𝑜 + 𝑃𝐹𝑅(𝑡)| < 𝑃𝐵𝐸𝑆𝑆
max

𝑃𝐵𝐸𝑆𝑆
max ,  otherwise 

                                              (11) 

and 

𝑃𝐸𝑉
∗ = {

𝑃𝐸𝑉
𝑜 ,  if |𝑃𝐵𝐸𝑆𝑆

𝑜 + 𝑃𝐹𝑅(𝑡)| < 𝑃𝐵𝐸𝑆𝑆
max

𝑃𝐵𝐸𝑆𝑆
max − 𝑃𝐹𝑅(𝑡),  otherwise 

                                                  (12) 

Models Charge Bus system for sensor fault mitigation is represented in below simulation 

model. 

 

Figure 2: Charge Bus Systems for Measured Current and Sensor Data 

Model Simulations and Analysis 

The simulation results demonstrated a significant improvement in battery longevity and 

efficiency. Early fault detection, enabled by the health check status, played a pivotal role 

in preventing critical battery failures [18]. The BMS's ability to detect and mitigate cell 

degradation, capacity loss, and thermal issues in their early stages resulted in a notable 

reduction in costly repairs and increased user confidence in EV reliability. Moreover, the 

dynamic management of State of Charge (SOC) and State of Health (SOH) based on real-

time data was shown to extend the battery's lifespan and provide more accurate range 

predictions, addressing one of the key concerns for EV users. Adaptive control over 

charging and discharging processes optimized energy utilization, leading to improved 

efficiency and reduced energy wastage [19].  
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. 

. 

Active cell balancing strategies based on health status data further contributed to enhanced 

energy efficiency and battery performance. The simulation illustrated that a balanced state 

of charge among individual cells can effectively extend the overall battery life. 

Temperature management strategies, fine-tuned according to health status, maintained the 

battery within the optimal temperature range, ensuring consistent efficiency and longevity. 

Incorporating user feedback and enabling predictive maintenance improved user 

engagement and reduced downtime, ultimately maximizing the efficiency and reliability of 

the EV fleet. 

Figure 3, 4 and 5 below represents “Total EV load Simulated”, “Measured Current and 

Sensor Accuracy of BMS” and “SOC Estimated” 

 

Figure 3: Simulated Total EV Load of Bus System 

 

Figure 4: Simulated Measured Current and Sensor Plot 
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Figure 5: Total SOC Estimated for Simulated Values 

Battery Efficiency: The equations presented address the optimization of battery efficiency. 

Specifically, they calculate the power output of the EV charging station (EVCS), the power 

output of the BESS (P_BESS), and the power injected into the EV (P_EV). These 

calculations are essential for managing the energy flow within the system. By optimizing 

these parameters, the algorithm ensures that the energy is distributed efficiently, 

contributing to the overall performance and longevity of the battery [20].  

Battery Health: Assessing battery health is equally crucial. The concept of battery health 

often relates to its state of charge, capacity, and overall condition. The equations introduced 

help in determining the state of health by considering factors such as the reference power 

for EV charging (P_EV^o) and the Frequency Regulation (FR) operation. The FR operation 

is designed to compensate for variations in frequency (Δf) and plays a vital role in 

maintaining the stability and health of the battery. 

Physical Constraints and Limitations: It's important to note that the equations incorporate 

physical constraints and limitations. For example, the power output from the BESS is 

constrained to fall within predefined limits (P_BESS^min and P_BESS^max). This 

constraint ensures that the battery operates within safe and optimal ranges. Additionally, 

the allocation of power for the FR operation (P_FR) is bounded by a coefficient (α) to 

prevent overloading or straining the battery. 

Overall System Optimization - The presented equations (5) ,(8) and concepts underscore 

the holistic approach to battery management. They consider not only the efficiency of 

energy utilization but also the health and safety of the battery. By striking a balance 

between these factors, the algorithm aims to optimize the overall performance of the 

system, ensuring that the battery operates efficiently while maintaining its health and 

longevity [21].  

Conclusion 
The implementation of a health check status within the BMS emerges as a critical solution 

for addressing the complex challenges facing EV batteries [22]. Early fault detection 

capabilities not only enhance safety but also significantly reduce repair costs and enhance 

user trust in the reliability of EVs. The dynamic management of State of Charge (SOC) and 

State of Health (SOH) in response to real-time data empowers EVs to provide more 

accurate range estimations and extend battery life, alleviating a common concern among 

EV drivers. The adaptive control over charging and discharging processes, guided by health 
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status, optimizes energy utilization and minimizes energy wastage, thereby improving 

overall efficiency. Active cell balancing and temperature management strategies, informed 

by health data, contribute further to battery performance, increasing energy efficiency and 

longevity [23]. By incorporating user feedback, predictive maintenance, and data analysis, 

this research outlines a holistic approach to battery management that enhances user 

engagement, reduces downtime, and maximizes EV efficiency. Overall, the integration of 

a health check status within the BMS marks a pivotal milestone in the pursuit of sustainable 

and efficient electric transportation [24]. This research underscores its transformative 

potential, not only benefiting individual EV owners but also advancing the broader goals 

of environmental sustainability and the widespread adoption of electric vehicles [25], [26]. 
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