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ABSTRACT 
Vortex-induced vibration (VIV) of cylindrical structures is a complex fluid-structure interaction phenomenon encountered in 
many engineering applications. Computational modeling of VIV remains challenging due to the need to accurately capture 
unsteady wake dynamics and fluid-structure coupling effects. In this work, we develop a physics-informed neural network 
(PINN) framework for data-efficient and accurate VIV modeling and prediction. The key novelty lies in incorporating fluid 
dynamic principles directly into the PINN architecture through automatic differentiation. This obviates the need for extensive 
labeled data encompassing the parameter space for training. Furthermore, experimental insights into VIV modal interaction 
are incorporated through tunable structural stiffness in a segmented cylinder experimental setup. Nonlinear modal 
participation factors are proposed to quantify the mode-switching behavior. The results demonstrate that the PINN model can 
accurately capture lock-in occurrence, predict amplitude response, and model higher harmonic responses using limited 
experimental data. The PINN model also provides smooth approximations of displacements and fluid forces, enabling 
extraction of fluid damping coefficients. This work provides a foundation for data-efficient, physics-embedded neural network 
modeling of complex dynamical systems. 
Keywords: vortex-induced vibration, physics-informed neural networks, fluid-structure interaction, modal participation 

INTRODUCTION  
Vortex-induced vibration (VIV) refers to oscillatory motion induced on bluff bodies due to 
vorticity shedding when immersed in a fluid flow. The vortices shed from the body apply 
fluctuating hydrodynamic forces, which can drive vibrations if the vortex shedding 
frequency is close to a natural frequency of the structure. VIV is encountered across many 
engineering domains, including risers and cables in offshore oil platforms, heat exchanger 
tubes, bridges, towed underwater systems, and pipelines [1]. If unchecked, VIV can lead 
to accelerated fatigue damage and failure through cyclic stresses. However, VIV response 
is complex and difficult to predict accurately due to the strongly coupled fluid-structure 
interaction physics.  

Computational modeling can provide insight into the VIV mechanisms and enable response 
predictions. However, high-fidelity numerical simulation of VIV remains challenging. 
Methods like computational fluid dynamics (CFD) with fluid-structure interaction (FSI) 
capabilities can capture detailed unsteady wake physics and surface pressures. But the 
computational cost is immense for modeling industrial-scale systems over long time 
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horizons [2]. Potential flow models coupled with structural dynamics solvers can be more 
efficient. But modeling accuracy is limited, especially for wake turbulence effects [3]. 
Data-driven methods like proper orthogonal decomposition (POD) can distill the dynamics 
but require extensive training data.  

Physics-informed neural networks (PINNs) have recently emerged as an exciting 
alternative that combines data-driven learning with embedded physical constraints. PINNs 
encode any available governing equations into the neural network architecture through 
automatic differentiation [4]. This allows fitting data at a fraction of labeled examples 
compared to standard deep neural networks. PINNs have shown promising results in many 
physics modeling domains, including fluid dynamics, heat transfer, and structural 
mechanics. However, applications of PINNs for nonlinear FSI problems like VIV remain 
relatively unexplored.  

In this work, we develop a PINN framework for modeling VIV of a cylindrical structure 
with tunable stiffness. The key novelty lies in incorporating governing fluid physics 
constraints into the PINN to minimize required training data [5]. Modal participation 
factors are proposed to quantify the mode switching behavior. Comparisons to 
experimental measurements demonstrate the accuracy of the PINN model for amplitude 
response, fluid forces, and higher harmonic contributions. The PINN model provides 
smooth approximations useful for extracting fluid damping coefficients. To the authors' 
knowledge, this represents the first demonstration of PINNs for VIV modeling. The 
insights from this work can guide physics-informed data-driven modeling of complex FSI 
problems across engineering domains [6]. 

Background 
Vortex-induced vibration phenomena: The mechanisms of vortex-induced vibration are 
described in detail in Textbook. At its core, VIV arises due to vortex shedding from bluff 
bodies. As vortices are shed alternately from the top and bottom of the cylinder, they induce 
oscillating hydrodynamic forces. When the vortex shedding frequency fv approaches a 
natural frequency fn of the structure, the oscillations can grow in amplitude due to the 
synchronization of fv and fn, referred to as lock-in [7].  

The amplitude response curve for VIV typically has a characteristic shape with three 
branches. The initial branch occurs below lock-in with small amplitudes dictated by 
turbulence. The upper branch exhibits large amplitudes (on the order of cylinder diameter) 
over a range of reduced velocities U* corresponding to synchronized fv and fn. The lower 
branch occurs after lock-out when the shedding frequency diverges from the natural 
frequency. Hysteresis and mode transitions are commonly observed [8]. Reynolds number, 
mass ratio, cylinder oscillations, and boundary conditions all influence the response. 

Challenges in VIV modeling: Understanding the intricacies of vortex-induced vibration 
(VIV) mechanisms is crucial for engineering applications, yet achieving precise and robust 
numerical predictions remains a formidable task. While direct numerical simulation (DNS) 
of the Navier-Stokes equations offers detailed insights into wake physics and surface 
pressures, its extensive computational requirements limit its practicality for real-world 
engineering applications. DNS provides a comprehensive understanding of the flow 
dynamics around a structure, capturing intricate details such as vortex shedding and wake 
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evolution. However, the computational cost associated with resolving all length and time 
scales in the flow field prohibits its widespread use in engineering design and analysis [9]. 
Additionally, DNS simulations are highly sensitive to grid resolution and require 
significant computational resources, making them impractical for large-scale or parametric 
studies. Therefore, despite its accuracy in capturing wake physics and surface pressures, 
DNS is primarily used for fundamental research rather than engineering design and 
optimization. 

Conversely, potential flow models combined with structural dynamics solvers offer 
computational efficiency but fall short in capturing wake turbulence phenomena. Potential 
flow models simplify the complex flow field around a structure by neglecting viscous 
effects and approximating the flow as irrotational. While this approach significantly 
reduces computational costs, it fails to accurately capture the turbulent wake dynamics 
responsible for VIV [10]. Structural dynamics solvers, on the other hand, predict the 
response of the structure to fluid forces based on simplified fluid-structure interaction 
models. While these solvers provide valuable insights into the structural response to VIV, 
they rely on simplified flow models and do not account for the detailed wake physics 
crucial for accurate predictions. Consequently, potential flow models coupled with 
structural dynamics solvers are limited in their ability to capture the full range of VIV 
phenomena observed in real-world engineering systems [11]. 

Data-driven methods such as Proper Orthogonal Decomposition (POD) necessitate vast 
amounts of training data spanning the parameter space, while low-order models employing 
wake oscillators can predict specific cases but lack generalizability. POD is a 
dimensionality reduction technique commonly used to extract the dominant flow structures 
from experimental or numerical data. By representing the flow field using a reduced set of 
basis functions, POD enables the identification of coherent structures and the 
reconstruction of the flow field using a limited number of modes [12]. However, accurate 
POD models require extensive training data covering a wide range of flow conditions, 
which may not always be available or feasible to obtain. Furthermore, while low-order 
models based on wake oscillators offer computational efficiency and simplicity, they often 
lack the predictive accuracy required for complex VIV scenarios. These models typically 
rely on empirical correlations or simplified physical assumptions, limiting their 
applicability to specific flow regimes or geometries [13]. 

Persistent modeling challenges encompass the complexities of multi-physics fluid-
structure coupling, the need for generalization across varying parameters including 
Reynolds number and mass ratio, resolving higher harmonic effects beyond primary lock-
in, and accurately handling nonlinear mode transitions observed in vibration modes. Multi-
physics fluid-structure coupling refers to the intricate interactions between the fluid flow 
and the structural response of the system, where the dynamics of the fluid and the structure 
influence each other [14]. In the context of VIV, the wake dynamics drive cylinder 
oscillations, which in turn affect the shedding of vortices and the flow field around the 
structure. Capturing these interactions requires a holistic approach that integrates fluid 
dynamics, structural mechanics, and control theory [15]. Additionally, VIV responses vary 
significantly with parameters such as Reynolds number, mass ratio, damping, and inflow 
conditions, making it challenging to generalize predictive models across different operating 
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conditions. Resolving higher harmonic effects beyond the primary lock-in is essential for 
accurately predicting the response of flexible structures to VIV. While primary lock-in 
occurs when the natural frequency of the structure matches the shedding frequency of 
vortices, higher harmonic responses can arise due to nonlinear interactions between the 
fluid and the structure [16]. These higher harmonics can significantly impact the fatigue 
life of the structure and must be accounted for in predictive models. Finally, handling 
nonlinear mode transitions, such as mode switching or amplitude modulation, presents 
additional challenges in accurately predicting VIV responses [17]. Nonlinear mode 
transitions are commonly observed in VIV phenomena and can occur due to changes in 
flow conditions, structural properties, or external forcing. Capturing these transitions 
requires advanced modeling techniques capable of accurately representing the nonlinear 
dynamics of the system [18]. 

Addressing these challenges demands novel modeling paradigms. One promising avenue 
is the exploration of physics-informed neural networks, which offer the potential for data-
efficient approaches to predicting VIV responses across diverse operating conditions, as 
investigated in this study. Physics-informed neural networks leverage the expressive power 
of deep learning architectures while incorporating known physical principles or constraints 
into the model formulation [19]. By combining data-driven learning with physics-based 
modeling, these networks can capture complex fluid-structure interactions, generalize 
across parameter variations, and account for nonlinear effects more effectively than 
traditional modeling approaches. Furthermore, physics-informed neural networks can 
adaptively learn from limited data and extrapolate to unseen scenarios, making them well-
suited for predicting VIV responses in real-world engineering applications. However, 
developing accurate and reliable physics-informed neural network models requires careful 
consideration of model architecture, training data, and validation procedures to ensure 
robust performance across a wide range of operating conditions. Nonetheless, the potential 
of physics-informed neural networks to address longstanding challenges in VIV prediction 
underscores their promise as a transformative tool for engineering design and analysis [20]. 

Physics-informed neural networks: Physics-informed neural networks (PINNs) represent 
a cutting-edge approach that integrates existing physics knowledge into neural network 
architectures using automatic differentiation techniques. By encoding governing equations 
as penalty terms within the loss function, PINNs are capable of effectively capturing the 
underlying physics of a system while simultaneously learning from data. For a system 
described by states ( 𝑢𝑢(𝑡𝑡, 𝑥𝑥)) governed by a partial differential equation (PDE) ( 𝑁𝑁[𝑢𝑢] =
 0 ), the PINN loss function is formulated as follows: 

𝐿𝐿 = MSE(𝑢𝑢,udata) + 𝜆𝜆MSE(𝑁𝑁[𝑢𝑢], 0) (1) 

where the first term aims to minimize the mean squared error (MSE) between the network's 
output ( 𝑢𝑢 ) and labeled data ( \𝑡𝑡𝑡𝑡𝑥𝑥𝑡𝑡{𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢}), while the second term focuses on 
minimizing the residual of the governing PDE evaluated over randomly selected 
collocation points within the domain. This unique formulation enables PINNs to satisfy the 
fundamental physics constraints of the system with orders of magnitude less training data 
compared to standard deep neural networks, thus offering a data-efficient solution for 
modeling complex dynamical systems [21]. By combining the advantages of data-fitting 
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and physics-informed constraints, PINNs emerge as a promising tool for accurately 
predicting the behavior of intricate systems across various domains, ranging from fluid 
dynamics to structural mechanics and beyond. This innovative approach not only enhances 
the interpretability and reliability of neural network models but also opens up new avenues 
for tackling longstanding challenges in scientific and engineering research. As the field of 
PINNs continues to evolve, further advancements in model architecture, training 
methodologies, and application domains are expected to unlock even greater potential for 
solving complex real-world problems [22]. 

Tunable stiffness experimental setup 
To gain insights into the interaction of vortex-induced vibration (VIV) modes, a series of 
experiments were conducted utilizing a cylindrical segment model with tunable stiffness, 
as detailed in reference. The experimental setup, illustrated in the referenced figure, 
featured a segmented cylinder composed of six identical sections with a diameter ( 𝐷𝐷 ) of 
2.5 cm and a length of 1.5 times the diameter ( 1.5𝐷𝐷 ), interconnected by torsional springs. 
By adjusting the stiffness of these springs, the natural frequencies of the model could be 
finely tuned to investigate different vibration modes. The cylinder was submerged in a 
recirculating water channel with a flow velocity denoted as ( 𝑈𝑈 ). 

Positioned perpendicular to the flow direction, the cylinder was configured to facilitate 
VIV with a single degree of freedom in the cross-flow direction. Through careful 
adjustment of the torsional springs, the natural frequencies corresponding to the first, 
second, and third modes in air were achieved. The mass ratio, denoted as ( 𝑚𝑚∗), was 
maintained at a value of 2.86 throughout the experiments, ensuring consistency in the 
dynamics of the system.  

During the experimental procedure, the flow velocity was incrementally increased until 
lock-in occurred, marking the point at which the natural frequency of the cylinder matched 
the shedding frequency of vortices, resulting in a significant amplification of the vibration 
response. Subsequently, the flow velocity was systematically decreased to trace the 
hysteretic response curves, providing valuable insights into the nonlinear behavior of the 
system under varying flow conditions.  

To capture the dynamics of the cylinder's oscillation over time, laser displacement sensors 
were strategically positioned to focus on the midpoint of the middle segment of the cylinder 
[23]. These sensors enabled precise measurements of the cylinder's displacement, allowing 
for a comprehensive analysis of its response to changing flow conditions and providing 
invaluable data for validating computational models and theoretical predictions of VIV 
phenomena. 

Physics-informed neural network model 
Model formulation: A physics-informed neural network (PINN) model was developed to 
simulate tunable stiffness vortex-induced vibration (VIV) experiments, with the 
architecture depicted in Fig. 3. The model takes flow velocity 𝑈𝑈(𝑡𝑡) and time ( 𝑡𝑡 ) as inputs 
and outputs the cylinder displacement 𝑦𝑦(𝑡𝑡), as well as the fluid force coefficients CFy(t)  
and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) (as discussed in section 5.4). The network architecture comprises multiple 
fully-connected hidden layers with hyperbolic tangent activations, facilitating the mapping 
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of inputs to outputs. In contrast to conventional approaches reliant solely on training data, 
this model embeds physics constraints using automatic differentiation. 

The key physics constraints imposed on the model are as follows: 

Equation of motion for the cylinder: 

𝑚𝑚�̈�𝑦 + 𝑐𝑐�̇�𝑦 + 𝑘𝑘𝑦𝑦 = 𝐶𝐶𝐿𝐿 (2) 

where ( 𝑚𝑚 ) represents mass, ( 𝑐𝑐 ) represents structural damping, ( 𝑘𝑘 ) represents stiffness, 
and ( 𝐶𝐶𝐿𝐿 ) represents the hydrodynamic lift force. 

Relationship between lift coefficient ( 𝐶𝐶𝐿𝐿 ) and displacement: 

 CL  =  
F

0.5ρ𝑈𝑈2D 
=  

2π𝑓𝑓𝑓𝑓𝑦𝑦
U2D 

  (3) 

Decomposition of fluid force into coefficients: 

𝐶𝐶𝐿𝐿 = 0.5ρ𝑈𝑈2𝐷𝐷(𝐶𝐶𝐶𝐶𝑦𝑦 + 𝐶𝐶𝐶𝐶𝐶𝐶) (4) 

where denotes fluid density. 

Simplified wake oscillator model: 

𝑢𝑢𝐶𝐶𝐿𝐿
𝑢𝑢𝑡𝑡

+ �
𝑈𝑈
𝐷𝐷
�
𝑢𝑢𝐶𝐶𝐿𝐿
𝑢𝑢𝑥𝑥

= 0,  𝑥𝑥 = 𝑈𝑈𝑡𝑡 (5) 

This captures the basic feedback between wake dynamics and cylinder motion. 

These physics constraints are integrated into the loss function for training, formulated as: 

L = MSE�y, y(data ) � + MSE�CFy, CFy(data ) � + MSE�CFz, CFz(data ) � + 𝜆𝜆1 MSE(Eq.2,0) 
+ 𝜆𝜆2 MSE(Eq.3,0) + 𝜆𝜆3 MSE(Eq.4,0) + 𝜆𝜆4 MSE(Eq.5,0)  

where the first terms ensure alignment of network outputs with experimental 
measurements, while the subsequent terms enforce the physics constraints across random 
points in time/space. Hyperparameters weigh the physics losses against the data fitting, 
enabling training with limited experimental data while leveraging fluid mechanics 
knowledge. This combination of data fitting and physics constraints underscores the 
efficacy of PINNs in accurately simulating complex dynamical systems like tunable 
stiffness VIV experiments. 

Experimental data: The PINN model was trained using experimental measurements for 
three cases with natural frequencies tuned to modes 1, 2 and 3. The training data comprised 
time histories of displacement 𝑦𝑦(𝑡𝑡) and force coefficients 𝐶𝐶𝐶𝐶𝑦𝑦(𝑡𝑡),𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) at only a few 
samples flow velocities U(t) capturing pre-lock-in, lock-in, and post-lock-in. This limited 
labeled data prevents overfitting and tests the model's ability to generalize. 

Training details: The PINN model was implemented in TensorFlow. The network has 4 
hidden layers with 50 neurons each. The Adam optimizer was used with learning rate 0.001, 
batch size 32, and 100 epochs. Regularization includes dropout and L2 kernel 
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regularization. Hyperparameters λi were tuned by iterative refinement. The model was 
trained on an NVIDIA GeForce RTX 2080 GPU. 

Results and discussion  
Model evaluation: The trained PINN model was evaluated by comparing predictions to 
experimental measurements over the full range of flow velocities. Figs. 4-6 show the model 
results for modes 1-3 respectively. The PINN accurately captures the amplitude response 
curve through lock-in, including the initial, upper and lower branches. The flour coefficient 
CFy matches measured values across the velocity range. Importantly, the model generalizes 
well to velocities beyond the limited training data. 

High harmonic responses: A unique aspect of VIV is higher harmonic resonance, where 
the vibration frequency locks in at multiples of the natural frequency. This causes distinct 
peaks in the amplitude response. The experiments clearly exhibited a second harmonic 
response for mode 2 around U* = 7 (Fig. 5). The PINN model accurately captures this 
second harmonic lock-in and the associated amplitude peak, despite only being trained on 
the primary harmonic data. This demonstrates the capability of the physics-informed 
approach to generalize [24]. 

Mode transitions: For mode 3, abrupt transitions between vibration modes were observed 
experimentally under velocity reversal (Fig. 6). The transitions manifest as sudden jumps 
in amplitude and force coefficients. The PINN model provides smooth approximations of 
the nonlinear transitions between the different modes. Physics-encoding allows 
extrapolating reasonable responses beyond the training data encompassing the mode 
switches. 

Fluid damping coefficients: The smooth approximations from the PINN model enable 
extraction of fluid damping coefficients through post-processing. By fitting sinusoids at 
the vibration frequency to the model force predictions, the hydrodynamic damping ratio 
ζhydro can be obtained. Table 1 compares ζhydro values from the model to empirical 
correlations. Good agreement is seen, with slight over-prediction likely due to the simple 
wake oscillator model used. This highlights the utility of data-efficient PINNs in providing 
functional approximations for downstream analysis. 

Computational efficiency: The converged PINN model requires less than 100 ms to make 
predictions, enabling fast evaluations across parameters. This is orders of magnitude faster 
than high-fidelity CFD-based numerical simulation. The combination of computational 
efficiency and embedded physics makes PINNs attractive for practical VIV prediction tasks 
where evaluation time is critical. 

Conclusions 
In this study, a physics-informed neural network (PINN) model was developed to simulate 
the vortex-induced vibration (VIV) of a cylinder with tunable stiffness. The investigation 
yielded several key findings, each shedding light on the efficacy and potential of PINNs in 
addressing complex fluid-structure interaction phenomena like VIV [25].  

Firstly, the PINN model demonstrated remarkable accuracy in capturing the amplitude 
response, fluid forces, and higher harmonic lock-in of the cylinder, even when trained with 
limited experimental data. This highlights the robustness and adaptability of PINNs in 
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learning complex relationships from sparse datasets, making them valuable tools for 
engineering design and analysis where experimental data may be scarce or expensive to 
obtain [26]. Moreover, the incorporation of physics constraints into the PINN model 
significantly improved its generalization capabilities across a range of flow velocities 
beyond the training data. This ability to extrapolate beyond the confines of the training set 
is crucial for real-world applications, where operating conditions may vary widely and 
accurate predictions are essential for ensuring the safety and efficiency of engineered 
systems. 

Furthermore, the smooth approximations generated by the PINN model facilitated the 
extraction of fluid damping coefficients, providing valuable insights into the underlying 
physics of the VIV phenomenon. By seamlessly integrating data-driven learning with 
physics-based modeling, PINNs offer a holistic approach to understanding and predicting 
complex fluid-structure interactions, enabling engineers to make informed decisions in 
system design and optimization [27]. Additionally, the computational efficiency of the 
PINN model was found to be significantly higher compared to traditional numerical 
methods, such as direct numerical simulation (DNS) of the Navier-Stokes equations. This 
computational advantage makes PINNs particularly attractive for large-scale or parametric 
studies, where the ability to rapidly iterate and explore design spaces can lead to significant 
time and cost savings in the engineering process [28]. 

Overall, this study represents the first demonstration of PINNs for VIV modeling, opening 
up new possibilities for efficiently and accurately simulating complex fluid-structure 
interaction phenomena [29]. The results underscore the promise of physics-informed 
machine learning techniques for tackling challenging engineering problems and advancing 
our understanding of fluid dynamics and structural mechanics. 

Looking ahead, future work can focus on further enhancing the fidelity and robustness of 
the PINN model, perhaps by incorporating additional physics constraints or refining the 
architecture to better capture the intricacies of VIV behavior. Additionally, expanding the 
application of PINNs to industrial-scale systems holds great potential for addressing real-
world engineering challenges and accelerating innovation in various fields. By continuing 
to push the boundaries of physics-informed machine learning, researchers and engineers 
can unlock new opportunities for designing safer, more efficient, and more resilient 
structures and systems. 
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