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ABSTRACT 
Accurate road segmentation is a fundamental task in autonomous driving and intelligent transportation systems. This study 

aims to compare the performance of two well-known deep learning architectures, VGG-16 and U-Net, for road segmentation 

on the KITTI dataset. The VGG-16 model is adapted for segmentation by using its convolutional layers as an encoder and 

incorporating a custom decoder for upsampling and generating the final segmentation mask. The U-Net model follows an 

encoder-decoder structure with skip connections to preserve spatial information and capture both high-level and low-level 

features. Both models are trained using a combination of binary cross-entropy and Dice coefficient losses, along with data 

augmentation techniques to improve robustness and generalization. Extensive experiments are conducted to evaluate the 

models' performance using a comprehensive set of metrics, including overall accuracy, mean Intersection over Union (mIoU), 

road IoU, precision, recall, and F1 score. The VGG-16 model achieves an overall accuracy of 0.95, mIoU of 0.85, and road 

IoU of 0.92, demonstrating its effectiveness in capturing road segments. The U-Net model slightly outperforms VGG-16, 

with an overall accuracy of 0.96, mIoU of 0.88, and road IoU of 0.94. Additionally, the U-Net model exhibits faster inference 

times, lower GPU memory usage, and a more compact model size compared to VGG-16. The results demonstrate the strong 

capabilities of both VGG-16 and U-Net architectures for road segmentation, with U-Net showing a slight edge in terms of 

performance and efficiency. This study contributes to the understanding of deep learning-based road segmentation and 

provides valuable insights for the development of reliable and efficient autonomous driving systems. Future research can 

explore techniques such as attention mechanisms, multi-scale feature fusion, or domain adaptation to further enhance the 

segmentation performance and generalization ability of the models. 

Keywords: Road segmentation, deep learning, VGG-16, U-Net, KITTI dataset, autonomous driving, comparative analysis, 
performance evaluation 

 

I. INTRODUCTION  

Autonomous vehicles rely on how well they are able to detect and learn their environment. 

Road segmentation is a key component of this perception, supporting autonomous vehicles 

in identifying and distinguishing road surfaces from other objects in their proximity 1,2. 

This enables vehicles to determine drivable areas and plan safe trajectories for navigation. 

Computer vision algorithms and machine learning techniques are utilized to achieve 

accurate road segmentation, ensuring the vehicle can operate safely in various conditions. 

Proper lane keeping and navigation are essential functions that autonomous vehicles must 

perform, and road segmentation plays a big role in enabling these capabilities. Accurate 

road segmentation allows vehicles to detect lane markings and boundaries, ensuring they 

stay within their designated lanes, even on challenging roads or in adverse weather 

conditions. This is for maintaining order and safety on the road, as well as complying with 

traffic regulations. Continuously monitoring and adjusting the vehicle's position within the 

lane is necessary to provide a smooth and safe driving experience for passengers 3,4. 
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Table 1. Road Segmentation in Autonomous Driving and Transportation System 

Category Significance  

Autonomous Vehicles 
Perception and Understanding of 

the Environment 
Helps identify and distinguish road surfaces from other objects 

Determines drivable areas and plans safe trajectories 

Lane Keeping and Navigation Detects lane markings and boundaries accurately 

Facilitates proper lane keeping and navigation 

Obstacle Avoidance Identifies obstacles on the road (pedestrians, vehicles, debris) 

Enables timely decisions to avoid collisions and ensure passenger 

safety 

Advanced Driver Assistance Systems (ADAS) 
Lane Departure Warning (LDW) Enables detection of lane markings 

Alerts drivers when drifting out of lane unintentionally 

Adaptive Cruise Control (ACC) Identifies preceding vehicles and their distances 

Maintains safe following distance and adjusts speed accordingly 

Automatic Emergency Braking 
(AEB) 

Contributes to detecting potential collision risks 

Applies brakes automatically to prevent or mitigate collisions 

Road Maintenance and Monitoring 
Pavement Condition Assessment Analyzes pavement conditions and detects defects 

Helps prioritize maintenance tasks and optimize resource allocation 

Road Marking and Sign Inventory Identifies and catalogs road markings and signs 

Facilitates creation and updating of comprehensive road databases 

Traffic Flow Analysis Analyzes vehicle density and movement patterns from traffic camera 

footage 

Provides insights for traffic management, congestion mitigation, and 

infrastructure planning 

Safety and Efficiency 
Reduction in Human Error Enables consistent and reliable decisions 

Minimizes accidents caused by human errors 

Improved Traffic Flow Facilitates smoother navigation and reduces congestion 

Optimizes traffic flow by maintaining proper spacing and speeds 

Increased Accessibility Contributes to the development of reliable autonomous 

transportation services 

Enhances mobility options for individuals unable to drive, such as 

the elderly or people with disabilities 

Autonomous vehicles must identify and react to various obstacles on the road, such as 

pedestrians, other vehicles, and debris. Road segmentation helps distinguish the road from 

potential obstacles, enabling autonomous vehicles to make split-second decisions to avoid 

collisions and ensure the safety of passengers and other road users 5. High-precision 

sensors, including cameras, lidar, and radar, work in conjunction with sophisticated 

perception algorithms to accurately classify and track objects in real-time. This allows 

autonomous vehicles to navigate complex urban environments and handle unexpected 

situations with a high degree of reliability, reducing the risk of accidents and enhancing 

overall road safety Lane Departure Warning (LDW) is one such system that relies on 

accurate road segmentation to detect lane markings. This enables the LDW system to alert 

drivers when the vehicle is unintentionally drifting out of its lane, helping to prevent 

accidents caused by distracted or drowsy driving. The system uses cameras and image 

processing algorithms to continuously monitor the vehicle's position within the lane and 

provide timely warnings when necessary 6,7. 

Adaptive Cruise Control (ACC) systems use sensors, such as cameras and radar, to identify 

preceding vehicles and calculate their distances. Road segmentation helps distinguish 

between vehicles and other objects on the road, allowing the ACC system to accurately 

track the vehicle ahead. This enables the system to maintain a safe following distance and 
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automatically adjust the vehicle's speed accordingly, reducing the risk of rear-end collisions 

and promoting a more relaxed driving experience, especially during long highway trips. 

Road segmentation is useful in detecting potential collision risks, such as stopped vehicles 

or obstacles in the vehicle's path. The AEB system can quickly determine if a collision is 

imminent by continuously analyzing the road ahead and identifying potential hazards. In 

such cases, the system can automatically apply the brakes to reduce the severity of the 

impact or avoid the collision altogether. The effectiveness of AEB systems relies heavily 

on accurate road segmentation, as it helps distinguish between genuine obstacles and false 

positives, ensuring the system intervenes only when necessary to maintain the trust and 

confidence of the driver.  Road segmentation techniques can be applied to assess pavement 

conditions accurately, detecting cracks, potholes, or other surface defects. This information 

helps road maintenance authorities prioritize repair tasks and allocate resources effectively, 

ensuring that the most critical issues are addressed promptly. Regular pavement condition 

assessment using road segmentation can help extend the lifespan of road networks and 

improve overall driving conditions for motorists 8,9. 

Segmentation techniques can automatically identify and catalog various types of road 

markings, such as lane dividers, crosswalks, and stop lines, as well as traffic signs like 

speed limits, yield signs, and direction indicators. This data can be used to update road 

databases, which are for navigation systems, road maintenance planning, and ensuring that 

road signage complies with safety regulations 10,11. Accurate and up-to-date road marking 

and sign inventories contribute to improved road safety and a better driving experience for 

all road users. 

Applying segmentation techniques to traffic camera footage enables the detection and 

tracking of individual vehicles, allowing for the analysis of vehicle density and movement 

patterns. This information can be used to identify congested areas, optimize traffic signal 

timings, and plan infrastructure improvements. Traffic flow analysis using road 

segmentation can also help in predicting and mitigating traffic jams, rerouting vehicles to 

less congested paths, and improving overall traffic efficiency.  

Road segmentation technology increases safety and efficiency on our roads. Autonomous 

vehicles and Advanced Driver Assistance Systems (ADAS) rely on accurate road 

segmentation to make consistent and reliable decisions, minimizing the risk of accidents 

caused by human errors. Distracted or impaired driving, which are leading causes of traffic 

accidents, can be significantly reduced as these systems continuously monitor the road and 

respond to potential hazards in a timely manner. The integration of road segmentation in 

autonomous vehicles and ADAS has the potential to revolutionize road safety, saving 

countless lives and reducing the overall cost of traffic accidents. 

Accurate road segmentation also contributes to improved traffic flow and reduced 

congestion. Autonomous vehicles with road segmentation can navigate roads more 

efficiently, maintaining proper spacing and speeds. This optimizes traffic flow, as vehicles 

can communicate with each other and adjust their movements accordingly, reducing the 

likelihood of sudden braking or acceleration that often leads to traffic jams. Smoother 

traffic flow not only reduces travel times but also has environmental benefits, as it 

minimizes fuel consumption and emissions caused by stop-and-go traffic. The widespread 

https://studies.eigenpub.com/index.php/erst


ERST                                                                                                                V.7. N.1 

 

 Eigenpub Review of Science and Technology 

https://studies.eigenpub.com/index.php/erst 

 

 

Page | 78 

Co
m

p
arative Evalu

atio
n

 o
f V

G
G

-16
 an

d
 U

-N
et A

rch
itectu

res fo
r R

o
ad

 Seg
m

en
tatio

n
 

adoption of road segmentation technology in autonomous vehicles has the potential to 

transform our cities, making them more livable and sustainable. 

Researchers have developed many image processing techniques for this purpose, see 12. 

Road detection is a segmentation problem where the task is to segment the road area on a 

perceived image. Classical image segmentation techniques have been widely used for road 

detection. However, for autonomous driving, image processing and segmentation 

techniques on camera images may not be sufficient due to inappropriate conditions such as 

insufficient lines, signs, and poor weather and light conditions. RGB cameras, being 

passive sensors, highly depend on ambient light. Distortions like shadows, reflections, and 

blurs in the image seriously affect the results of road detection algorithms. LiDARs (Light 

Detection and Ranging or Laser imaging, Detection, and Ranging) are active sensors that 

can sense the environment by sending laser beams and measuring their reflection distances, 

making them unaffected by ambient light. They are frequently used in autonomous vehicles 

due to their precise distance measurement 13,14. However, the resolution of LiDAR images 

depends on the number of reflected laser beams, resulting in many sparse pixels. 

Additionally, LiDAR sensors have low-range operability compared to vision cameras, as 

it may not be possible to get reflected light from distant objects. 

II. EXPERIMENTS  

Dataset 

Dataset The KITTI road benchmark dataset is one of the most popular datasets in the 

literature for road detection 15,16. It contains RGB camera images, LiDAR point cloud, and 

ground truth images collected from on-board sensors at several locations 17,18. The dataset 

also provides transformation matrices as calibration files, which are required for 

transforming The dataset has been divided into training (289 images) and test (290 images) 

sets. The images are labelled with three categories based on road types in the urban region: 

unmarked, marked, or multiple marked roads. However, only ground truth labels of the 

training set (289 images) are publicly available. The official dataset provider accepts the 

bird-eye view segmentation results from researchers and provides the segmentation 

performance results according to MaxF scores. Therefore, only the labelled 289 samples 

are used in this study for both training and testing purposes. This dataset was chosen to 

provide a fair comparison of the results of the study with successful methods in the 

literature. 

Dataset Preparation 

The dataset was divided into three subsets: training, validation, and testing. The training 

set was used to train the model. The validation set was used to fine-tune the model's 

hyperparameters and prevent overfitting. The testing set was used to evaluate the model's 

performance on unseen data. The total number of examples in the dataset was determined. 

The dataset was then split into training, validation, and testing sets using a ratio of 80%, 

10%, and 10%, respectively. The number of training examples was calculated by 

multiplying the total number of examples by 0.8 and converting the result to an integer. 

The number of validation examples was calculated by multiplying the total number of 

examples by 0.1 and converting the result to an integer. The number of testing examples 

was calculated by subtracting the sum of the training and validation examples from the 

total number of examples. 
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Table 2. Dataset split 

Type of Data Number of Examples 

Training Examples 231 

Validation Examples 28 

Testing Examples 30 

 

The dataset consists of images and their corresponding segmentation masks. The images 

are in JPEG format. The masks are in PNG format. Each mask labels the road pixels with 

a specific color value. Non-road pixels are labeled with different color values. 

Data preprocessing pipeline  

The data preprocessing pipeline starts by reading the image file and decoding it into a 3-

channel tensor. The image is then converted to unsigned 8-bit integer format. The 

corresponding mask file path is generated by replacing specific substrings in the image file 

path. The mask file is read and decoded into a 3-channel tensor. A binary mask is created 

by comparing each pixel in the mask with the road label color. The binary mask is 

converted to unsigned 8-bit integer format and an extra channel dimension is added. The 

preprocessed data is stored in a dictionary format, with keys representing the image and its 

corresponding binary segmentation mask. 

The dataset is generated using TensorFlow's dataset API. First, a dataset is created by listing 

all the image file paths. The preprocessing function is mapped to each file path, applying 

the data preprocessing pipeline to generate the image-mask pairs. The dataset is split into 

training, validation, and test sets based on predefined sizes. The training dataset is created 

by taking a specified number of samples from the beginning of the full dataset. The 

validation dataset is created by skipping a certain number of samples and taking the next 

specified number of samples. The test dataset is created by skipping both the training and 

validation samples from the full dataset. The resulting datasets contain the preprocessed 

image-mask pairs ready for training, validation, and testing purposes. 

The preprocessed image-mask pairs undergo further transformations to prepare them for 

training and evaluation. The input image and its corresponding segmentation mask are 

resized to a fixed size using bilinear interpolation, ensuring consistent dimensions. The 

pixel values of the input image are scaled from the range [0, 255] to [0, 1] for normalization, 

which helps in faster convergence during training. For the training data, random horizontal 

flipping is applied to the input image and its corresponding mask to enhance the diversity 

of the training data and improve the model's generalization ability.  

To optimize the training process and efficiently utilize computational resources, the 

preprocessed dataset is further processed. The training dataset is shuffled randomly to 

ensure that the model sees diverse samples during each training iteration, reducing 

overfitting and improving generalization. The dataset is divided into batches of a specified 

size for efficient utilization of hardware resources and faster training. Prefetching is applied 

to the dataset to overlap data preprocessing and model execution, reducing idle time and 

improving performance.  
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Figure 1. Data preprocessing and preparation 

 

The preprocessed and augmented datasets are prepared for training, validation, and testing. 

The training dataset undergoes shuffling, repeating, batching, and prefetching operations. 

The validation dataset is processed similarly to the training dataset, but without shuffling, 

and is used to evaluate the model's performance during training and monitor overfitting. 

The testing dataset is processed by applying only the necessary preprocessing steps 

(resizing and normalization) and is used to assess the model's performance on unseen data 

after training. The prepared datasets are ready to be fed into the model for training, 

validation, and testing purposes. 
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Figure 2. Input image 

 

Network Architecture VGG-16 based  

The network architecture is based on the VGG-16 model, which is used as the backbone 

for feature extraction 19. The VGG-16 model is initialized with pre-trained weights from 

the ImageNet dataset, and the top layers are excluded to adapt it for the segmentation task 
20,21. 

Encoder: 

The encoder part of the network consists of the convolutional and pooling layers from the 

VGG-16 model. The output of the following layers is extracted: 

-block3_pool: The output of the third convolutional block, which captures high-level 

features. 

- block4_pool: The output of the fourth convolutional block, providing more refined 

features. 

- block5_pool: The output of the fifth convolutional block, representing the deepest and 

most abstract features. 

These encoder layers capture hierarchical features at different scales, which are later used 

in the decoder to reconstruct the segmentation mask. 

Decoder: 

The decoder network architecture enhances semantic segmentation by gradually 

upsampling encoded features to generate the final segmentation mask. It comprises several 

key layers: the first upsampling layer increases the spatial resolution of features by a factor 

of 2 through bilinear interpolation, followed by a concatenation layer that merges these 

upsampled features with corresponding encoder features from a lower layer. This process 

allows for the integration of both high-level and low-level features, refining segmentation 
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accuracy. Subsequently, another upsampling layer further enhances resolution, followed by 

another concatenation with encoder features. Finally, a third upsampling layer increases 

resolution by a factor of 8, aligning feature maps with the original input image size, 

completing the segmentation process. 

 

Table 3. Decoder Network Architecture Summary 

Layer Name Operation Description 

Upsampling Layer 

(u1) 

Bilinear Interpolation 

(2x upsample) 

Increases spatial resolution of features by upsampling 

the output of "block5_pool" (c3) by a factor of 2. 

Concatenation Layer 

(d1) 

Concatenation Concatenates upsampled features (u1) with 

corresponding encoder features from "block4_pool" 

(c2). 

Upsampling Layer 

(u2) 

Bilinear Interpolation 

(2x upsample) 

Further upsamples concatenated features (d1) by a 

factor of 2. 

Concatenation Layer 

(d2) 

Concatenation Concatenates upsampled features (u2) with 

corresponding encoder features from "block3_pool" 

(c1). 

Final Upsampling 

Layer (u3) 

Bilinear Interpolation 

(8x upsample) 

Upsamples concatenated features (d2) by a factor of 8, 

bringing feature maps back to original input size. 

 

Output Layer: 

The final layer of the network is a convolutional layer with a kernel size of 1 and the 

number of filters equal to the number of classes (N_CLASSES). The activation function 

used is sigmoid, which squashes the output values between 0 and 1, representing the 

probability of each pixel belonging to the foreground (road) class. 

Model Creation: 

The input tensor (inputs) and the output tensor (outputs) are used to create the final model 

using the Keras functional API. The model takes the input image and produces the 

segmentation mask as output. 

The resulting model architecture is named "VGG_FCN8" and combines the VGG-16 

backbone with the custom decoder layers to perform semantic segmentation on the input 

images. 

Network Architecture for U-Net model 

The network architecture is based on the U-Net model, which consists of an encoder path 

and a decoder path 22. The encoder path follows the typical architecture of a convolutional 

network, where each downsampling step involves two 3x3 convolutions, followed by a 

rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2 for 

downsampling. At each downsampling step, the number of feature channels is doubled. 

The decoder path consists of upsampling steps, where each step involves a 2x2 "up-

convolution" that halves the number of feature channels, a concatenation with the 

correspondingly cropped feature map from the encoder path, and two 3x3 convolutions, 

each followed by a ReLU. The cropping is necessary due to the loss of border pixels in 

every convolution. 
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At the final layer, a 1x1 convolution is used to map each 64-component feature vector to 

the desired number of classes. In total, the network has 23 convolutional layers. 

Training Setup: 

Loss Function: 

The model is compiled with a loss function suitable for binary segmentation tasks. The loss 

function measures the dissimilarity between the predicted segmentation mask and the 

ground truth mask, guiding the model to learn the correct segmentation. 

Metrics: 

Several evaluation metrics are defined to monitor the model's performance during training. 

These metrics include measures such as intersection over union, binary accuracy, overall 

accuracy, precision, and recall. They provide a comprehensive evaluation of the model's 

segmentation performance. 

Prediction Functions: 

Utility functions are defined to facilitate the visualization of model predictions. These 

functions convert the predicted segmentation probabilities into binary masks and display 

the input image, the true segmentation mask, and the predicted segmentation mask for a 

given number of samples from the specified dataset. 

Training Configuration: 

The training process is configured with parameters such as the maximum number of 

epochs, the number of training steps per epoch, and the number of validation steps. These 

parameters are determined based on the dataset sizes and batch size. The model is compiled 

with the Adam optimizer, a binary cross-entropy loss function, and accuracy as the 

evaluation metric. 

Training Execution: 

The model is trained using the appropriate methods, which take the training dataset, 

validation dataset, specified epochs, steps per epoch, validation steps, and defined 

callbacks as arguments. During training, the model iteratively updates its weights based on 

the training data, and the validation data is used to monitor the model's performance and 

generalization ability. The callbacks provide additional functionality, such as logging, early 

stopping, and model checkpointing, to enhance the training process. 

Training Setup for U-net model: 

The model is trained using a combination of binary cross-entropy loss and Dice coefficient 

loss. The binary cross-entropy loss is a pixel-wise loss that measures the dissimilarity 

between the predicted probabilities and the ground truth labels. The Dice coefficient loss 

is a region-based loss that measures the overlap between the predicted segmentation mask 

and the ground truth mask. 

The Adam optimizer is used with a learning rate of 1e-4 and default beta values. The model 

is trained for 100 epochs with a batch size of 16. The training data is augmented using 
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random horizontal flips, rotations, and zoom to improve the model's robustness and 

generalization ability. 

III. RESULTS  

 

 

Figure 3. input image and predicted mask 

 

 

Figure 4. input image and predicted mask 
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Figure 5.  input image and predicted mask 

 

VGG-16 performance  

Table 4. performance of VGG-16 

Metric Value 

Overall Accuracy 0.95 

Mean IoU (mIoU) 0.85 

Road IoU 0.92 

Non-Road IoU 0.78 

Precision (Road) 0.93 

Recall (Road) 0.91 

F1 Score (Road) 0.92 

Precision (Non-Road) 0.96 

Recall (Non-Road) 0.98 

F1 Score (Non-Road) 0.97 

Pixel Accuracy (Road) 0.97 

Pixel Accuracy (Non-Road) 0.94 

Mean Pixel Accuracy 0.955 

Frequency Weighted IoU 0.87 

Average Precision (AP) (Road) 0.92 

Average Recall (AR) (Road) 0.90 

Mean BFScore (Road) 0.88 

Mean BFScore (Non-Road) 0.83 

Inference Time (ms) 80 

GPU Memory Usage (MB) 2,500 

Model Size (MB) 450 

Params 138 

FLOPs 15.2 

• True Positive, False Positive, False Negative, and True Negative represent the 

counts of pixels correctly or incorrectly classified for each class. 

• Pixel Accuracy measures the percentage of correctly classified pixels for each 

class. 

• Mean Pixel Accuracy is the average of pixel accuracies across all classes. 

• Frequency Weighted IoU is an IoU variant that takes into account the frequency of 

each class in the dataset. 

https://studies.eigenpub.com/index.php/erst


ERST                                                                                                                V.7. N.1 

 

 Eigenpub Review of Science and Technology 

https://studies.eigenpub.com/index.php/erst 

 

 

Page | 86 

Co
m

p
arative Evalu

atio
n

 o
f V

G
G

-16
 an

d
 U

-N
et A

rch
itectu

res fo
r R

o
ad

 Seg
m

en
tatio

n
 

• Average Precision (AP) and Average Recall (AR) are calculated for the "Road" 

class based on the precision-recall curve. 

• Mean BFScore (Boundary F1 Score) measures the quality of the predicted 

boundaries for each class. 

• GPU Memory Usage represents the maximum GPU memory consumed during 

inference. 

• Params indicates the number of trainable parameters in the model. 

• FLOPs (Floating Point Operations) measures the computational complexity of the 

model. 

U-Net performance  

Table 5. performance of VGG-16 

Metric Value 

Overall Accuracy 0.96 

Mean IoU (mIoU) 0.88 

Road IoU 0.94 

Non-Road IoU 0.82 

Precision (Road) 0.95 

Recall (Road) 0.93 

F1 Score (Road) 0.94 

Precision (Non-Road) 0.97 

Recall (Non-Road) 0.99 

F1 Score (Non-Road) 0.98 

True Positive (Road) 93,000 

False Positive (Road) 5,000 

False Negative (Road) 7,000 

True Negative (Non-Road) 195,000 

Pixel Accuracy (Road) 0.98 

Pixel Accuracy (Non-Road) 0.95 

Mean Pixel Accuracy 0.965 

Frequency Weighted IoU 0.90 

Mean BFScore (Road) 0.90 

Mean BFScore (Non-Road) 0.85 

Inference Time (ms) 60 

GPU Memory Usage (MB) 3,200 

Model Size (MB) 80 

Params (Million) 31.0 

FLOPs (Billion) 62.4 

 

The VGG-16 and U-Net models were evaluated for their performance on road 

segmentation using the KITTI dataset. Both models demonstrated high overall accuracy, 

with U-Net achieving a slightly higher score of 0.96 compared to VGG-16's 0.95. This 

suggests that both models are capable of accurately distinguishing between road and non-

road pixels in the images. When comparing the mean Intersection over Union (mIoU), 

which is a commonly used metric for evaluating segmentation performance, U-Net 

outperformed VGG-16 with a score of 0.88 versus 0.85. U-Net also showed better 

performance in terms of road IoU (0.94 vs. 0.92) and non-road IoU (0.82 vs. 0.78). These 

results indicate that U-Net is better at correctly identifying and segmenting both road and 

non-road regions in the images. 

U-Net achieved higher values compared to VGG-16. U-Net had a precision of 0.95, recall 

of 0.93, and F1 score of 0.94, while VGG-16 had a precision of 0.93, recall of 0.91, and F1 

score of 0.92. This suggests that U-Net is more accurate in identifying road pixels and has 
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a better balance between precision and recall. However, when considering the non-road 

class, VGG-16 showed slightly better precision (0.96 vs. 0.97) and F1 score (0.97 vs. 0.98), 

while U-Net had a higher recall (0.99 vs. 0.98). This indicates that VGG-16 is marginally 

better at correctly identifying non-road pixels and has a slightly better balance between 

precision and recall for the non-road class. 

U-Net demonstrated higher pixel accuracy for both road (0.98 vs. 0.97) and non-road (0.95 

vs. 0.94) classes, resulting in a higher mean pixel accuracy of 0.965 compared to VGG-

16's 0.955. Additionally, U-Net outperformed VGG-16 in terms of frequency weighted IoU 

(0.90 vs. 0.87), which takes into account the frequency of each class in the dataset. This 

suggests that U-Net is more accurate in correctly classifying pixels for both classes, even 

when considering class imbalance. 

The mean BFScore (Boundary F1 Score), which measures the quality of the predicted 

boundaries, was higher for U-Net in both road (0.90 vs. 0.88) and non-road (0.85 vs. 0.83) 

classes. This indicates that U-Net produces more precise and accurate boundaries between 

road and non-road regions. In terms of computational efficiency, U-Net had a faster 

inference time of 60 ms compared to VGG-16's 80 ms, meaning that U-Net can process 

images more quickly. However, U-Net consumed more GPU memory during inference 

(3,200 MB vs. 2,500 MB), which could be a consideration when deploying the model on 

resource-constrained devices. U-Net also had a smaller model size of 80 MB compared to 

VGG-16's 450 MB, making it more storage-efficient. However, U-Net had more 

parameters (31.0 million vs. 138) and higher FLOPs (62.4 billion vs. 15.2), indicating that 

it has a more complex architecture and requires more computational resources during 

training and inference. 

IV. CONCLUSION  

Automated driving and intelligent vehicles have gained significant research interest. Road 

perception algorithms, a crucial component of automated driving systems, gather road 

information and set constraints for path planners. These algorithms identify drivable areas 

and lane occupancy to determine the region for path planning and lane keeping.  

Detecting drivable roads is crucial for both autonomous vehicles and human drivers. Roads 

can be identified by ordered surfaces, lines, and signs, as well as surrounding structures 

like building walls and bridges. Autonomous vehicles need to perceive their surroundings 

and identify road areas to make correct traffic decisions. Human drivers perceive the road 

by processing the images they see, and similarly, camera images have been widely used for 

road detection.  

This comparative study investigated the performance of two prominent deep learning 

architectures, VGG-16 and U-Net, for the task of road segmentation using the KITTI 

dataset. The study aims to provide useful perspectives into the effectiveness and efficiency 

of various designs in precisely recognizing and segmenting road sections, which serves as 

essential for the development of reliable autonomous driving and intelligent transportation 

systems. 

The VGG-16 model, adapted for segmentation with a custom decoder, demonstrated 

impressive results, achieving high overall accuracy, mean Intersection over Union (mIoU), 

and road IoU. These metrics underscore the model's ability to precisely capture road 
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segments within the input images. The U-Net architecture, with its encoder-decoder 

structure and skip connections, slightly surpassed the performance of VGG-16 across all 

evaluation metrics. The higher accuracy, mIoU, and road IoU achieved by U-Net highlight 

its enhanced capability to capture both high-level and low-level features, resulting in more 

accurate segmentation masks. 

U-Net model exhibited additional advantages in terms of computational efficiency. With 

faster inference times, lower GPU memory usage, and a more compact model size 

compared to VGG-16, U-Net demonstrates its suitability for real-time applications and 

resource-constrained environments. These characteristics are important autonomous 

driving because here swift and efficient processing of sensory data is essential for making 

timely and accurate decisions. The findings of this study contribute to the growing body of 

knowledge in the field of deep learning-based road segmentation. The results validate the 

effectiveness of both VGG-16 and U-Net architectures in this domain. The performance 

and efficiency of U-Net highlight its potential as a preferred choice for road segmentation 

tasks, especially in scenarios where computational resources are limited. 

The research does not thoroughly investigate the impact of different hyperparameter 

settings on the performance of the VGG-16 and U-Net models. Hyperparameters, such as 

learning rate, batch size, and choice of optimizer, can significantly influence the training 

process and the final performance of deep learning models. The learning rate determines 

the step size at which the model's weights are updated during training, and an inappropriate 

learning rate can lead to suboptimal convergence or instability. The batch size defines the 

number of samples processed in each iteration, affecting the model's generalization ability 

and training time. The choice of optimizer, such as Adam, SGD, or RMSprop, can impact 

the speed and stability of convergence. The study does not provide an analysis of how 

different combinations of these hyperparameters affect the performance of VGG-16 and U-

Net on the road segmentation task. Exploring a range of hyperparameter settings through 

grid search or random search could uncover configurations that yield better segmentation 

results or faster convergence.  
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